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Abstract

Machine learning algorithms are currently being implemented in an escalating manner to

classify and/or predict the onset of some neurodegenerative diseases; including Alzheimer’s

Disease (AD); this could be attributed to the fact of the abundance of data and powerful

computers. The objective of this work was to deliver a robust classification system for AD

and Mild Cognitive Impairment (MCI) against healthy controls (HC) in a low-cost network in

terms of shallow architecture and processing. In this study, the dataset included was down-

loaded from the Alzheimer’s disease neuroimaging initiative (ADNI). The classification

methodology implemented was the convolutional neural network (CNN), where the diffusion

maps, and gray-matter (GM) volumes were the input images. The number of scans included

was 185, 106, and 115 for HC, MCI and AD respectively. Ten-fold cross-validation scheme

was adopted and the stacked mean diffusivity (MD) and GM volume produced an AUC of

0.94 and 0.84, an accuracy of 93.5% and 79.6%, a sensitivity of 92.5% and 62.7%, and a

specificity of 93.9% and 89% for AD/HC and MCI/HC classification respectively. This work

elucidates the impact of incorporating data from different imaging modalities; i.e. structural

Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI), where deep learn-

ing was employed for the aim of classification. To the best of our knowledge, this is the first

study assessing the impact of having more than one scan per subject and propose the

proper maneuver to confirm the robustness of the system. The results were competitive

among the existing literature, which paves the way for improving medications that could

slow down the progress of the AD or prevent it.
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Introduction

Neurodegenerative diseases have gained increasing attention in the past few decades; these

include Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and others. Several

research groups have tackled the usage of machine learning algorithms for the sake of detec-

tion, localization, prediction of the disease, or clustering different diseases or disease stages [1–

3]. Image based diagnosis of AD is important and required mainly to avoid subjective assess-

ments [4]. Deep learning-based methods gives successful results particularly in medical image

analysis [5] due to flexible and efficient formulations [6].

In 2017, over 121 thousand people died from AD, in the United States, making it the sixth

leading cause of death. Between the years 2000 and 2017, the number of deaths due to AD has

increased by 145% [7]. By 2050, the number of people older than 60 years will be increased by

1.25 billion, equivalent to 22% of the global population, with 79% living in the world’s less

developed countries [8]. The annual expenses for the disease per is around $868 and $3,109

per person in low-income and lower-to middle- income countries respectively [9].

MCI can be an antecedent to several neurodegenerative diseases [1,10]. Prominently, MCI

is considered to be the prodromal phase to AD [7,11]. Around 15–20% of people elder than 65

years were diagnosed with MCI because of different pathologies. In a two-year follow-up, 15%

of the subjects with MCI would develop dementia, and in a five-year follow-up 32% of subjects,

with MCI, would develop AD [7].

Several research projects proposed machine learning algorithms assessing AD with differ-

ent goals based on different types of features, including; Cerebrospinal Fluid (CSF) histopa-

thology, cognitive questionnaire tests, and Medical Imaging, such as; Magnetic Resonance

Imaging (MRI) and Diffusion Tensor Imaging (DTI) [1,12–17].

In this work, the objective was to classify AD and MCI from healthy controls (HC) using a

convolutional neural network (CNN), where DTI and MRI were employed. Moreover, all dif-

fusion maps were investigated and compared; Mean Diffusivity (MD), Fractional Anisotropy

(FA), and Mode of Anisotropy (MO). Moreover, the effect of the time interval between two

subsequent scans was investigated to assess the convenient period between one’s scans to

avoid overfitting.

Materials and methods

The dataset, employed in this study, is owned by a third-party organization; the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). A complete description of ADNI and up-to-date

information is available at http://adni.loni.usc.edu/ and data access requests are to be sent to

http://adni.loni.usc.edu/data-samples/access-data/. Detailed inclusion criteria for the diagnos-

tic categories can be found at the ADNI website (http://adni.loni.usc.edu/methods, ADNI2

manual page 27). All ADNI studies are conducted according to the Good Clinical Practice

guidelines, the Declaration of Helsinki, and U.S. 21 CFR Part 50 (Protection of Human Sub-

jects), and Part 56 (Institutional Review Boards). Written informed consent was obtained

from all participants before protocol-specific procedures were performed. The ADNI protocol

was approved by the Institutional Review Boards of all of the participating institutions. The

ethics committees/institutional review board that approved the ADNI study are listed within

S1 File. The dataset employed is formed of 406 subjects: 185, 106, and 115 subjects with HC,

MCI and AD respectively. The subjects’ characteristics are listed in Table 1.

The preprocessing of the scans was adopted from the pipeline introduced in [19,20]. MRI

T1 scans were spatially segmented and normalized to the Montreal Neurological Institute

(MNI) template using the Statistical Parametric Mapping (SPM12) software; specifically, the

Computational Anatomy Toolbox (CAT12) was utilized and the Diffeomorphic Anatomical
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Registration using Exponentiated Lie algebra (DARTEL) algorithm was implemented [21].

Linear regression was implemented to remove the effect of the Total Intracranial Volume

(TIV) [22]. This pipeline output several files; such as the White Matter (WM) volume, Gray

Matter (GM) volume, TIV values, and the deformation fields (to and from the MNI space). On

the other hand, the DTI scans were preprocessed as per the guidelines of the FMRIB Software

Library (FSL) [23]; where the eddy currents were corrected, the skull was stripped, the diffu-

sion tensor was calculated, and the diffusion maps were calculated. Last, the DTI maps were

co-registered with the normalized T1 scans of the same subject at the same time point via the

SPM coregister toolbox [24].

Three main maps of diffusion can be calculated from DTI, named; MD, FA, and MO

[25,26]. MD is the average of the eigenvalues of the diffusion tensor ellipsoid [27]. FA is a mea-

sure of the flow in the axons being isotropic or closer to anisotropic (0 is perfect isotropy and 1

is perfect anisotropy). MO reflects the skewness of the flow; i.e. is it closer to tubal (-1), spheri-

cal (0), or planar (1) flow. In neurodegenerative diseases, including Alzheimer’s disease, the

demyelination can be perceived as an increase in Radial Diffusivity (RD) and a decrease in FA

[28,29].

The hippocampus and the entorhinal cortex are the main and earliest regions that develop

anatomical atrophy in the case of AD [26,28,30–36]. Thus, the bounding box, including the

hippocampus and the entorhinal cortex, was identified via the Harvard-Oxford [37–40] and

the Juelich [41] atlases respectively; originally, the scans were 121×145×121 and by selecting

the Volume of Interest (VOI), they became 61×37×38 (Fig 1).

To address the classification task, a 2D CNN was employed, since it has the advantage of

taking into consideration the spatial relationships between pixels; especially with a pathology

that would progress over time and brain regions [19,42–44].

The proposed CNN consisted of the image input layer, convolutional filters as described

below, batch normalization layer, ReLU layer [45], maxpooling layer, fully connected layer,

Table 1. Subjects’ characteristics.

Male/Female (no. unique) No. scans separated at least a year or more Age MMSE Years of Education

HC (n = 185) 89/96 (55) 110 73.6±6.1 29.0±1.2 16.4±2.7

MCI (n = 106) 66/40 (44) 59 73.3±5.8 26.8±1.9 16.3±2.6

AD (n = 115) 69/46 (50) 57 75.7±8.1 23.0±2.5 15.5±3.0

HC: Healthy controls, MCI: Mild cognitive impairment, AD: Alzheimer’s disease, MMSE: Mini-mental state exam[18]

https://doi.org/10.1371/journal.pone.0230409.t001

Fig 1. The hippocampus and the entorhinal cortex bounding box.

https://doi.org/10.1371/journal.pone.0230409.g001
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softmax layer, and the classification layer (Fig 2). The weights of the network were calculated

using the gradient descent optimization using the Root Mean Square Propagation (rmsprop)

algorithm [46]. Recently, Sobolev gradient based optimization has been used in deep network

based methods to diagnose AD [47,48]. However, the standard gradient descent optimization

is efficient in the proposed approach in terms of computation.

The concept of 1×1 convolution was first introduced by Lin et al. [49], whereas its usage has

been scarce in medical applications [50,51]. Its role in decreasing the complexity while increas-

ing the nonlinearities -hence, the discriminative ability- was later clarified in [52].

In order to select the optimal network hyperparameters such as the network depth, filters’

size and number, iterative experiments were employed where one layer was added and its filter

size was optimized before adding the next layer. The optimal sizes were selected when the

highest performance measures were met. It is worth noting that the learning of the weights

was done via mini-batch scheme; where the batch size, the learning rate, and the number of

epochs were 20, 0.001 and 60 respectively. The ten-fold cross-validation implies 10% test set

and 90% training set; further, the training set is split into 75% for the network training, and

25% for the validation of the parameters. Validation was performed once per epoch.

In this work, three experiments were performed:

• Analysis of individual and cascaded maps: The MD volume was fed to CNN and the per-

formance measures of the test set were calculated; the same was done for FA and MO and

the optimal CNN parameters were selected. In addition, the three diffusion volumes were

cascaded and fed to the CNN and the optimal CNN parameters were selected for the cas-

caded volume. The same setting was done for the cascaded MD and GM volumes. Cascading

in this study was done by concatenating the diffusion map volumes following each other in

depth. Thus, the original size of 61×37×38 for one map would increase to 61×37×76 and

61×37×114 in case of two and three maps respectively; where the third dimension is normal

to the axial plane as described in Fig 2

• Analysis while including a single scan per year for the same subject: The impact of exclud-

ing temporally-close scans (less than a year); i.e. portions vs. annual was assessed in this text.

In particular, the dataset comprised subjects who have been scanned more than once; the

interval between two subsequent scans was not fixed. Thus, all scans were explored alto-

gether (denoted in this study by portions). In addition, scans that remained after excluding

those belonging to the same subjects but scanned within less than a year; either from preced-

ing or succeeding scan (denoted by annual) were explored as well. In other words, if subject

X has scans XS1, XS2, and XS3 sorted by the date the scan was performed; where XS1 and XS2

were taken within less than a year, and XS2 and XS3 were taken within a year or more, only

XS1 and XS3 would be kept for that subject X; which is referred as annual. Whereas, if all

Fig 2. CNN architecture (FA maps as an example of input scans). BN: Batch normalization, FC: Fully connected ayer.

https://doi.org/10.1371/journal.pone.0230409.g002
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scans for X were retained irrespective of the interval; i.e. keeping XS1, XS2, and XS3, it would

be referred as portions.

• Analysis of segregated versus mixed training and test datasets: Separating the cross-vali-

dation folds by IDs or random assignment to any fold; segregated vs. mixed was evaluated in

this text. In this analysis, the impact of multiple scans per subject was exploited in two ways;

to put all scans belonging to one subject in either a training or test set per cross-validation

which was referred to previously as “segregated”, or just to randomize the selection of scans

per cross-validation irrespective of the ID of the subject which was referred as “mixed”.

Five performance measures were calculated; Area Under the Curve (AUC), accuracy, sensi-

tivity, specificity, and F1- measure[53]. Since the MD mean of the performance measures was

primarily the highest in comparison with the other maps, a statistically significant difference

between all other maps and MD was analyzed. The Sign test was employed [54,55] since the

population was not always normal, assessed by the Shapiro-Wilk test [56], and there were only

ten points of observations (number of the cross-validation folds).

To plot the Receiver Operating Characteristic (ROC) curve for any experiment, ten-fold

cross validation passes, having different x-y pairs (sensitivity/TPR and 1-specificity/FPR) cor-

responding to each cross-validation pass, were utilized. The ten curves were interpolated to a

common x-axis, named False Positive Rate (FPR), and calculated the average for the other axis,

named True Positive Rate (TPR).

For each fold in the cross-validation, the ROC curve has a set of FPR and TPR points form-

ing the curve. First, a common arbitrary set of FPR values was chosen. In order to calculate the

average ROC curve of the ten folds, the (FPR, TPR) pairs were sorted in a monotonically

increasing fashion with respect to FPR. All the ten curves were looped over, where each loop

was unique over the FPR values. To avoid the problem of multiple TPR-values for the same

FPR value; i.e. vertical lines, the (FPR, TPR) pair were selected at the last value of FPR (corre-

sponding to the largest value of TPR denoted by TPRmax for the same value of FPR). Then, the

(FPR, TPRmax) was interpolated to the previously-selected common FPR-grid. The same

method was applied for the rest of the curves, such that all of them coincide on the same grid

of FPR, then the average was calculated.

The aim of this work was to provide an automatic classification of the MCI and AD versus

HC. For some subjects having multiple scans at different timepoints, the effect of selecting

only scans that were taken a year or more from the previous one with respect to the same sub-

ject was investigated. In addition, the impact of having different timepoint scans for the same

subject in the training set and how the separation based on the subject is assessed in terms of

the effect on the overall performance.

The implementation was done on a 64-bit Windows server 2019 machine, Intel Xeon CPU

E5-2650 @ 2 GHz processor, eight cores, and 384 GB RAM. The CNN architecture was built

using MATLAB ver. R2018b.

Results

In this study, several objectives were addressed for detecting AD via a machine learning tech-

nique; namely CNN. the first objective is to search for the best values for the CNN hyperpara-

meters that would maximize performance. Whereas, the second objective is study if the

diffusion maps would yield a good discrimination between different classes or fusion with

other structural data will boost the performance. The third objective is to evaluate the impact

of the time gap between two successive scans belonging to the same subject. Finally, the study
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was interested in assessing the effect of mixing the training and test sets or segregating them

such that all scans belonging to the same subject are in either the training set or the test set.

Upon evaluating the different hyperparameters of 2D CNNs, the optimal CNN size, for one

volume (MD, MO, FA, or GM) each of which is 61×37×38, is formed of one layer in depth

having five filters each of which was 5×5×38. On the other hand, the optimal CNN size for cas-

caded volumes experiments; namely MD+MO+FA of size 61×37×114 and GM+MD of size

61×37×76, is formed of two layers; where the first included thirty 1×1×114 or thirty 1×1×76 fil-

ters respectively and the second layer included five 3×3×30 filters. Regarding 2D CNNs, it is

worth pointing out that the depth of the filters must match with that of the input volumes, and

that the depth of the output of the convolution must match with the number of filters [57].

Analysis of individual and cascaded maps

Regarding the maps themselves, the MD maps were roughly statistically significant than other

diffusion maps, in comparison, and also the three volumes cascaded (Tables 2 and 3 respec-

tively). MD maps resulted in a classification accuracy of 88.9% and 71.1%, a sensitivity of

83.5% and 51.9%, a specificity of 91.7% and 81.8% and AUC of 0.93 and 0.68 for classifying

AD and MCI respectively from HC. In the experiments implemented in this work, the FA

yielded better results than MO. FA resulted in an accuracy of 86% and 72.1%, a sensitivity of

78.7% and 50%, a specificity of 90.1% and 79.4%, and AUC of 0.88 and 0.73 for classifying AD

and MCI respectively from HC. On the other hand, MO resulted in an accuracy of 82.8% and

64.4%, a sensitivity of 73.8% and 37.4%, a specificity of 87.9% and 79.4%, and an AUC of 0.88

and 0.62 for HC/AD and HC/MCI classification respectively. Feeding the GM to the proposed

CNN improved the results but not significantly (Table 2). GM resulted in an accuracy of

91.3% and 75.7%, a sensitivity of 88.3% and 60.7%, and a specificity of 92.8% and 84% and an

AUC of 0.96 and 0.80, for classifying AD and MCI respectively from HC.

Further, incorporating the GM with the MD (cascading them as deeper volume denoted by

MD+GM) improved the results (Table 3), sometimes significantly depending on the perfor-

mance measure involved, compared with either MD or GM alone. Specifically, MD+GM pro-

duced an accuracy of 93.5% and 79.6%, a sensitivity of 92.5% and 62.7%, a specificity of 93.9%

and 89% and an AUC of 0.94 and 0.84 for AD and MCI classification respectively. Cascading

the three maps resulted in the least performance (Table 3); MD+MO+FA produced an accu-

racy of 78.6% and 70.8%, a sensitivity of 66.3% and 41.5%, a specificity of 85.6% and 87.3%

and an AUC of 0.86 and 0.74 for the classification of AD and MCI respectively versus HC.

Analysis while including a single scan per year for the same subject

Generally speaking, excluding the scans that belonged to the same subject that were carried

out within less than a year resulted in an insignificant drop in the performance in terms of

accuracy, AUC, sensitivity, specificity, and F1-score, as shown in Tables 2 and 3.

Analysis of segregated versus mixed training and test datasets

Mixing up the scans for one subject in both the training and test sets in one cross-validation

yielded overfitting; in particular, the results were generally statistically significantly higher in

mixed portions experiments with respect to segregated ones. The level of significance was less

when the input scans were removed if two scans for the same subject were performed in less

than a year (Table 3). The accuracy and AUC for the cascaded mixed maps were 16.9% and

0.12 respectively higher than the corresponding segregated ones for HC/AD classification and

22.2% and 0.25 respectively for HC/MCI classification; this highlights the overfitting severity

encountered.
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The ROC curves for all analyses are displayed in Fig 3, and summary of results is tabulated

in Table 4.

Discussion

MD outperformed both MO and FA, when employing the individual maps for the classifica-

tion task with AUC of 0.93, 0.88 and 0.88 for MD, FA, and MO respectively, and this seems to

be in concordance with the results from [17,26,29,64]. Douaud et al. [26] reported out that the

significant variations in MD, as opposed to FA and MO, primarily in the amygdala-hippocam-

pus complex. Kantarci et al. [29]found out that the MD in the hippocampal and para-hippo-

campal areas was complementary to the GM volume for the classification of HC/AD. Firbank

et al. [66] added that the clusters where MD was significantly higher in AD subjects than that

of controls were primarily in the left temporal lobe; that was parallel with atrophy in the grey

matter in these locations. Further, Rose et al. [67] reported that MD was elevated significantly

at the hippocampus, amygdala, and entorhinal cortex, whereas, FA was reduced significantly

mainly at the thalamus. Also, they showed that the cortical areas with increased MD correlate

Table 2. Classification results.

Portions segregated Annual segregated

MD Mode FA GM MD and GM MD Mode FA GM MD and GM

HC/

AD

Acc 0.889±0.099

(0.898)

0.828±0.089

(0.830)

0.860±0.106

(0.895)

0.913±0.077

(0.913)

0.935±0.078

(0.965)

0.868±0.109

(0.910)

0.814±0.090

(0.789)

0.826±0.096

(0.879) ‡

0.922±0.056

(0.938)

0.904±0.049

(0.882)

AUC 0.931±0.083

(0.969)

0.878±0.139

(0.910) �
0.878±0.144

(0.934)

0.955±0.058

(0.977)

0.941±0.082

(0.972)

0.936±0.084

(0.982)

0.858±0.116

(0.833)

0.876±0.111

(0.897)

0.976±0.041

(1.000) �/‡‡

0.974±0.036

(0.985)

Sens 0.835±0.202

(0.905)

0.738±0.160

(0.773)

0.787±0.212

(0.818)

0.883±0.187

(1.000)

0.925±0.087

(0.955)

0.857±0.077

(0.833)

0.643±0.132

(0.667) ���
0.680±0.150

(0.667) ��
0.910±0.096

(0.917)

0.893±0.093

(0.833)

Spec 0.917±0.129

(1.000)

0.879±0.104

(0.889)

0.901±0.089

(0.889)

0.928±0.111

(1.000)

0.939±0.112

(1.000)

0.873±0.150

(0.909)

0.900±0.117

(0.955)

0.900±0.117

(0.909)

0.927±0.094

(1.000)

0.909±0.086

(0.909)

F1 0.840±0.149

(0.861)

0.755±0.131

(0.766)

0.796±0.167

(0.869)

0.876±0.118

(0.895) �
0.918±0.092

(0.950) �
0.827±0.123

(0.861)

0.704±0.130

(0.641) ��
0.727±0.144

(0.775) ��/‡

0.891±0.071

(0.889)

0.867±0.061

(0.857) ‡

HC/

MCI

Acc 0.711±0.170

(0.737)

0.644±0.154

(0.650) �
0.721±0.116

(0.719)

0.757±0.130

(0.754)

0.796±0.139

(0.776) �
0.703±0.132

(0.735)

0.638±0.094

(0.647)

0.632±0.181

(0.706) �
0.745±0.115

(0.765) ��
0.722±0.139

(0.735)

AUC 0.681±0.247

(0.697)

0.619±0.193

(0.587)

0.732±0.171

(0.740)

0.800±0.159

(0.860)

0.842±0.124

(0.852)

0.644±0.232

(0.583)

0.730±0.141

(0.705)

0.648±0.175

(0.652)

0.745±0.157

(0.758) �
0.773±0.129

(0.795)

Sens 0.519±0.215

(0.500)

0.374±0.323

(0.286) �
0.499±0.249

(0.450)

0.607±0.307

(0.427) �
0.627±0.298

(0.527) �
0.490±0.238

(0.500)

0.207±0.225

(0.167) ��
0.323±0.168

(0.333)

0.487±0.194

(0.500)

0.607±0.169

(0.667) §

Spec 0.818±0.224

(0.892)

0.794±0.308

(0.889)

0.845±0.114

(0.861)

0.840±0.124

(0.838)

0.890±0.120

(0.917)

0.818±0.148

(0.818)

0.873±0.172

(0.955)

0.800±0.218

(0.818)

0.882±0.122

(0.909)

0.782±0.232

(0.818)

F1 0.564±0.201

(0.563)

0.389±0.223

(0.353) �
0.542±0.215

(0.511)

0.616±0.217

(0.544)

0.664±0.231

(0.628) �/§

0.523±0.220

(0.523)

0.236±0.234

(0.234) ��
0.399±0.208

(0.500)

0.563±0.211

(0.606)

0.609±0.143

(0.606)

AD: Alzheimer’s disease, MCI: mild cognitive impairment, Acc: accuracy, AUC: area under ROC curve, sens: sensitivity, spec: specificity, MD: mean diffusivity, MO:

mode of anisotropy, FA: fractional anisotropy, GM: gray-matter volume, numbers are displayed as mean±standard deviation (median)

� Statistically significant from the corresponding MD measures using the Sign test p�0.1

�� Statistically significant from the corresponding MD measures using the Sign test p�0.05

��� Statistically significant from the corresponding MD measures using the Sign test p�0.01

‡ Statistically significant from the corresponding portions measures using the Sign test p�0.1

‡‡Statistically significant from the corresponding portions measures using the Sign test p�0.05

§ Statistically significant from the corresponding GM measures using the Sign test p�0.1

https://doi.org/10.1371/journal.pone.0230409.t002
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with regions of reduced gray matter density measured using structural MRI in patients with

AD. It is worthy pointing out that the results in this work, coincide with [67].

In this work, the FA yielded better results than MO. This seems to be in contrast to the low-

sample study of [65] where the MO yielded accuracy that was ~7%-10% higher than that

driven by FA in HC/AD and HC/MCI respectively. It is worth noting that the sample size,

used in this study, was at least five-fold that of Lee et al [65]. The cascaded diffusion maps

yielded worse performance, but not always significantly, than employing the MD.

The GM volumes alone, in agreement with the literature, improved the results [17,68]; this

is attributed to the fact that AD is prominently characterized by amyloid plaques and neurofi-

brillary tangles that deposit in the GM which, in turn, leads to the death of the neurons and the

thinning of the cortex or simply atrophy [69–72]. Oishi et al. reported in their study “DTI is
useful for localizing and quantifying the anatomical abnormalities, but apparently not adequate
to investigate the histopathological background of the diseases” [71]. They explained that the

DTI measures could be affected by the pathology or other reasons. For example, the diffusion

lasts for up to 100 ms in a radius of up to 10 μm that is to be averaged over a voxel of 2–3 mm

in size; this indeed makes it more sensitive to the presence of multiple fiber bundles and partial

volume effect [71,73]. In addition, in Henf et al.’s work, they concluded that without applying

the partial volume correction, MD was not superior to gray matter volume in separating MCI

and AD from HC [73].

It is important to assert that in this work, the volumes namely; MD, FA, and MO, and GM

and MD were cascaded. Whereas, Wen et al. [62] assessed the MD and FA values over the GM

mask (Table 4), and therefore, the performance of the two works cannot be properly

compared.

Dyrba et al. [17], using the European DTI study on dementia (EDSD) cohort, reported that

combining the MD with GM extracted from structural MRI, where Support Vector Machine

(SVM) was utilized, had worsened the results of GM alone. Moreover, the authors reported

that the GM utilization outperformed the MD in terms of accuracy, sensitivity and specificity

Table 3. Classification results of the stacked diffusion maps.

Portions mixed Portions segregated Annual mixed Annual segregated

HC/ AD

Acc 0.955±0.040 (0.965) 0.786±0.108 (0.776) �� 0.886±0.103 (0.939) 0.814±0.114 (0.818)

AUC 0.988±0.017 (0.992) 0.864±0.146 (0.904) ��/§ 0.964±0.054 (0.985) 0.876±0.119 (0.876) �

Sensitivity 0.897±0.102 (0.905) 0.663±0.196 (0.618) � 0.757±0.299 (0.833) 0.663±0.223 (0.667) §

Specificity 0.989±0.023 (1.000) 0.856±0.109 (0.861) ��� 0.955±0.064 (1.000) 0.891±0.112 (0.909)

F1 0.934±0.061 (0.950) 0.688±0.170 (0.699) �� 0.775±0.291 (0.909) 0.700±0.182 (0.641) §

HC/ MCI

Acc 0.930±0.033 (0.929) 0.708±0.104 (0.714) ��� 0.870±0.046 (0.879) 0.662±0.097 (0.676) ���

AUC 0.991±0.007 (0.989) 0.738±0.146 (0.762) ��� 0.957±0.063 (0.976) 0.753±0.091 (0.742) ���

Sensitivity 0.842±0.096 (0.800) 0.415±0.288 (0.300) �� 0.660±0.138 (0.667) 0.360±0.238 (0.333) ���

Specificity 0.978±0.053 (1.000) 0.873±0.170 (0.946) �� 0.982±0.038 (1.000) 0.827±0.163 (0.864) ���

F1 0.895±0.050 (0.889) 0.466±0.208 (0.445) �� 0.773±0.093 (0.775) 0.398±0.201 (0.437) ���

AD: Alzheimer’s disease, MCI: mild cognitive impairment, Acc: accuracy, AUC: area under ROC curve, sens: sensitivity, spec: specificity, MD: mean diffusivity, MO:

mode of anisotropy, FA: fractional anisotropy, GM: gray-matter volume, numbers are displayed as mean±standard deviation (median)

� Statistically significant from the corresponding mixed measures using the Sign test p�0.1

�� Statistically significant from the corresponding mixed measures using the Sign test p�0.05

��� Statistically significant from the corresponding mixed measures using the Sign test p�0.01

§ Statistically significant from the corresponding MD measures using the Sign test p�0.1

https://doi.org/10.1371/journal.pone.0230409.t003
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(Table 4). In this work, incorporating the GM with the MD improved the results; not always

significantly though.

One of the biggest hurdles encountered when dealing with machine learning in general,

and neural networks in specific, is the limitation of the dataset; especially when dealing with

medical data; this is the main cause of overfitting [74]. The batch normalization layer is used

to reduce the problem of overfitting [75,76] due to its importance in deep learning [77]. In

addition, the usage of small-sized filters is usually enhancing the test set performance measures

compared to larger filters as explained in the Methods section, through decreasing the overfit-

ting which aligns with Pereira et al. [78] who advocated that small filter sizes of 3×3 would

minimize the effect of overfitting since the number of parameters to be learnt decreased. Fur-

ther, Simonyan and Zisserman [52] explained that the effective receptive field of two stacked

3×3 convolutional layers was equivalent to a single 5×5 layer and that of three stacked 3×3 con-

volutional layers was equivalent to a single 7×7 layer. Moreover, increasing the number of lay-

ers increases nonlinearities, which also decreases the weights, to be optimized, by 77% and

81% for the first and the second case respectively. In addition, the proposed architecture com-

prised of only one or two layers in depth to alleviate the problem of overfitting; this is in agree-

ment with Ahmed et al. [76] and RStudio online tutorials [79]. Though, ten-fold cross-

validation technique was incorporated to give a good estimate about the generalizability of the

classification[80,81].

Fig 3. ROC curves of left: AD/HC classification, right: MCI/HC classification.

https://doi.org/10.1371/journal.pone.0230409.g003
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It can be noticed that the drop of the performance between portions (all scans of the subject

are included) and annual (only scans a year or more apart are included) was minor; this could

be attributed to the fact that the number of the scans, upon being annually-scanned, dropped

-at least- to half of those without this constraint (Table 1).

As shown previously in the Results section, the effect of segregating the scans of the same

subject to either the learning or the testing data versus randomly selecting the scans with no

constraints during the cross-validation folds that the accuracy and AUC dropped by around

Table 4. Summary of results.

Study Study sample Methodology Results Data type(s)

(Dataset)

Liu et al., 2018

[58]

199 AD and 229 HC CNN on landmarks learnt by statistical

significance tests

Accuracy and AUC: HC/AD:

90.56% and 0.96

MRI (ADNI)

Lin et al., 2018

[59]

188 AD, 229 HC, 169 MCIc, and 193

MCInc

CNNs Accuracy and AUC:

HC/AD: 88.79%

MCIc/MCInc: 79.9% and 0.86

MRI (ADNI)

Islam et al., 2018

[60]

316 non-demented, 70 very-mild, 28

mild, and 2 with moderate dementia

Ensemble of very deep (~120–169 convolutional

layers) CNNs

Average multilabel

classification accuracy of

93.18%

MRI (OASIS [61])

Wen et al., 2018

[62]

46 AD and 46 HC Linear SVM for MD and FA whole maps only Accuracy and AUC: MD-GM

76%, 0.83

FA-GM 71%, 0.77

MRI and DTI

(ADNI)

Khvostikov et al.,

2018 [63]

48 AD, 108 MCI, and 58 HC MD only, only hippocampus, CNN, with/without

augmentation

Accuracy: MRI, MD

HC/AD: 85%, 97%

HC/MCI: 66%, 63%

MCI/AD: 75%, 80%

MRI and DTI

(ADNI)

Ahmed et al., 2017

[14]

45 AD, 58 MCI, and 52 HC MD, MRI, hippocampus bounding box, multiple

kernel learning

Accuracy: HC/AD: 90.2%

HC/MCI: 79.42%

MCI/AD: 76.63%

MRI, DTI, and

CSF (ADNI)

Nir et al., 2015

[64]

37 AD, 113 MCI, and 50 HC Linear SVM for MD and FA maximum path

density (MPD) maps (MD performed better)

Accuracy:

HC/AD: 74.5–84.9%

HC/MCI: 68.3–79% (MD only)

DTI (ADNI)

Lee et al., 2015

[65]

22 AD, 47 MCI, and 22 HC SVM on FA and MO from TBSS Accuracy:

HC/AD: FA 90.9%, MO 97.7

MCI/AD: FA 88.4%, MO 98.6

DTI (ADNI)

Dyrba et al, 2012

[17]

137 AD and 143 HC Multi-kernel SVM, MD, FA, WM, GM Accuracy:

HC/AD: MD 83.3%

FA 80.3%

GM 89.3%

MD+GM 88.7%

MD+GM+FA 89.1%

MRI and DTI

(EDSD)

The proposed

algorithm

115 AD, 106 MCI, and 185 HC Small CNN, MD, FA, MO, GM Accuracy and AUC:

HC/AD: MD 88.9%, 0.93

FA 86%, 0.88

MO 82.8%, 0.88

GM 91.3%, 0.96

MD+GM 93.5%, 0.94

HC/ MCI: MD 71.1%, 0.68

FA 72.1%, 0.73

MO 64.4%, 0.62

GM 75.7%, 0.80

MD+GM 79.6%, 0.84

MRI and DTI

(ADNI)

AD: Alzheimer’s disease, MCI: mild cognitive impairment, MCIc: MCI convert, MCInc: MCI non convert, HC: healthy controls, MD: mean diffusivity, MO: mode of

anisotropy, FA: fractional anisotropy, GM: gray matter, WM: white matter, CSF: cerebrospinal fluid, TBSS: tract-based spatial statistics, SVM: support vector machine,

CNN: convolutional neural network, AUC: area under curve, MRI: magnetic resonance imaging, DTI: diffusion tensor imaging, ADNI: Alzheimer’s disease

neuroimaging initiative, OASIS: open access series of imaging studies, EDSD: European DTI study on dementia.

https://doi.org/10.1371/journal.pone.0230409.t004
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17% and 0.124 respectively at p<0.05 for the HC/AD classification and 22.2% and 0.25 respec-

tively at p<0.01 for HC/MCI classification.

This could be interpreted as an overfitting case where during the cross-validation pass, the

network considered the temporal instance of the scan of the same subject as a previously seen

scan in the training stage; where there is a spatial dependency in the same subject as the disease

progresses. This overfitting case would promote the classification performance task. [44,82–

84].

Further, the average execution time for the entire ten-fold cross-validation, training and

testing, was 12.5 minutes, and the average time per one scan during testing was 0.005 seconds;

this is quite competitive when the availability of a graphical processing unit (GPU) is restricted

or not possible.

It is important to highlight that all models, proposed in this study, had their specificity

higher than their sensitivity; i.e. they are better at handling true negatives than true positives.

Coherent to this, some analyses suggested the presence of a trade-off between these two mea-

sures[85–87]. This is mainly due to the fact that number of healthy subjects used in this study

was quite larger than the number of MCI and AD subjects [85,86].

It is worthy to mention that incorporating the CSF amyloid data could be considered to be

interpreted and asses its role in differentiating cognitive deficits. Longitudinal assessment of

the cases should be studied; this is a promising means of early detection of the onset of AD

which helps aid AD drug discovery and testing.

Conclusion

In this paper, a CNN was handcrafted to classify MCI and AD from HC. The MD, FA, MO,

GM, MD+GM scans were compared; MD was the best-performing diffusion map amongst the

diffusion maps regarding classification in terms of accuracy, specificity, and AUC of 88.9%,

91.7% and 0.93 respectively for HC/AD classification, and 71.1%, 81.8% and 0.68 respectively

for HC/MCI classification. Combining GM with MD enhanced the performance but below

the 5% significance level; to give an accuracy, a specificity, and an AUC of 93.5%, 93.9% and

0.94 respectively for HC/AD classification and 79.6%, 89% and 0.84 respectively for HC/MCI

classification.

The dataset comprised more than one instance per subject and in this work, it is recom-

mended that the training and test sets should be split such that one’s scans were in the same

pile; i.e. the IDs of the subjects in the training set and the test set should not overlap.

Supporting information
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(PDF)
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